Current and circuits

(a) X and Y are two cylindrical wires. X has resistivity ρ, radius r and length L. Y has resistivity 2ρ, radius $2 r$ and length $2 L$. Determine the ratio $\frac{R_{X}}{R_{Y}}$ of the resistance of X to that of Y.
(b) Each of the four resistors in circuits (i) and (ii) has resistance 20Ω. Calculate the resistance between X and Y in each case.
(i)

(ii)

(c) In circuit 1, X, Y and Z are identical resistors of constant resistance. When resistor Z burns out the circuit becomes circuit 2.

Determine the ratios
(i) $\frac{P_{\mathrm{x} 1}}{P_{\mathrm{x} 2}}$ of the power dissipated in resistor X in circuit 1 to the power in X in circuit 2 ,
(ii) $\frac{P_{\mathrm{Y} 1}}{P_{\mathrm{Y} 2}}$ of the power dissipated in resistor Y in circuit 1 to the power in Y in circuit 2 .
(d) In the circuit shown the cell has emf $\mathcal{E}=12 \mathrm{~V}$ and internal resistance r.

Calculate
(i) R,
(ii) $\quad r$.
(e) The graph shows the I-V characteristics of two resistors X and Y .

IB Physics: K.A. Tsokos

X and Y are connected in series to a cell of negligible internal resistance. The emf of the cell is 5.0 V.

(i) Explain how it may be deduced that X is an ohmic resistor.
(ii) Suggest whether the resistance of Y increases or decreases as the voltage across it increases.
(iii) Determine the ratio $\frac{P_{\mathrm{x}}}{P_{\mathrm{Y}}}$ of the power dissipated in resistor X to the power in resistor Y .

Answers

(a) $\frac{R_{\mathrm{x}}}{R_{\mathrm{Y}}}=\frac{\frac{\rho L}{A}}{\frac{2 \rho \times 2 L}{4 A}}=\frac{\frac{\rho L}{\pi r^{2}}}{\frac{2 \rho \times 2 L}{\pi(2 r)^{2}}}=\frac{\frac{\rho L}{\pi r^{2}}}{\frac{\rho L}{\pi r^{2}}}=1$.
(b)
(i) The top and side resistors are in series for a total of 60Ω. This and the lower one are in parallel for a total of $\frac{1}{60}+\frac{1}{20}=\frac{1}{15}$ i.e. 15Ω.
(ii) The two vertical resistors are in parallel for a total of 10Ω. This is in series with the top resistor for a total of 30Ω. This is now in parallel with the lower one for a total of $\frac{1}{30}+\frac{1}{20}=\frac{1}{12}$ i.e. 12Ω.
(c) In circuit 1 the total resistance is $\frac{3 R}{2}$ and in circuit 2 it is $2 R$. So the current in circuit 1 in X is $\frac{1}{2} \times \frac{\varepsilon}{\frac{3 R}{2}}=\frac{\varepsilon}{3 R}$ and in circuit 2 it is $\frac{\varepsilon}{2 R}$. Hence
(i) $\quad \frac{P_{\mathrm{x} 1}}{P_{\mathrm{x} 2}}=\frac{R \times\left(\frac{\varepsilon}{3 R}\right)^{2}}{R \times\left(\frac{\varepsilon}{2 R}\right)^{2}}=\frac{4}{9}$. The power in X increases in circuit 2.
(ii) $\quad \frac{P_{\mathrm{Y} 1}}{P_{\mathrm{Y} 2}}=\frac{R \times\left(\frac{2 \varepsilon}{3 R}\right)^{2}}{R \times\left(\frac{\varepsilon}{2 R}\right)^{2}}=\frac{16}{9}$. The power in Y decreases in circuit 2.
(d)
(i) The voltage across R is the same as that across the 10Ω resistor i.e. $0.80 \times 10=8.0 \mathrm{~V}$. Hence $R=\frac{8.0}{0.20}=40 \Omega$.
(ii) $\quad V=\varepsilon-I_{\text {total }} r \Rightarrow 8.0=12-1.0 r \Rightarrow r=4.0 \Omega$.
(e)
(i) It is ohmic because the graph is a straight line through the origin.
(ii) The current increases disproportionately more than the voltage so the resistance decreases/or evaluate resistance at 2 different voltages.
(iii) $\quad X$ and Y are in series, so they take the same current. The sum of the voltages across X and Y must make 5.0 V and this happens for a current of 4.0 mA giving voltages 2.0 V across X and 3.0 V across Y . Hence $\frac{P_{\mathrm{X}}}{P_{\mathrm{Y}}}=\frac{V_{\mathrm{X}} \times I}{V_{\mathrm{Y}} \times I}=\frac{2}{3}$.

